
 

 

Scaling AI Workloads with NVIDIA DGX Cloud and Kubernetes: 

A Performance Optimization Framework 

 
Santosh Pashikanti 

 
Independent Researcher, USA 

 

 

 
Abstract 

 
As artificial intelligence (AI) workloads become increasingly complex and resource-intensive, organizations face 

challenges in scaling their infrastructure to meet performance demands. NVIDIA DGX Cloud, combined with 

Kubernetes, provides a scalable, high-performance computing platform for AI workloads. This white paper outlines 

a detailed framework for optimizing performance when deploying AI workloads on NVIDIA DGX Cloud using 

Kubernetes. It delves into architectural considerations, workload scheduling, resource management, and performance 

tuning strategies. Web references are provided at the end for further exploration. 

 

 
Key words: NVIDIA DGX Cloud, AI Workload Optimization, TensorRT, Kubernetes GPU Operator, Kubernetes 

Cluster Security, AI Model Deployment 
 
 

 
Introduction 

 
Scaling AI workloads efficiently requires a robust, flexible infrastructure that can handle diverse computational and 

storage needs. NVIDIA DGX Cloud offers an AI-optimized environment with pre-configured hardware and software 

stacks, while Kubernetes provides container orchestration for deploying, managing, and scaling workloads. Together, 

these technologies enable organizations to achieve high-performance AI at scale. 

 
This white paper addresses key technical considerations and presents a framework for optimizing performance. 
 

 

 
Architecture Overview 

 
NVIDIA DGX Cloud provides: 

 
1. High-Performance GPUs: NVIDIA A100 and H100 Tensor Core GPUs for massive parallelism [1]. 

2. NVLink Interconnect: High-bandwidth, low-latency communication between GPUs [2]. 

SV [ISSN 2349-7122 ] VOLUME 15 ISSUE 3 2025

PAGE NO : 124



 

 

3. Pre-optimized Software: NVIDIA AI Enterprise Suite, CUDA libraries, and frameworks like TensorFlow 

and PyTorch [3]. 

4. Scalable Storage Solutions: Integration with GPUDirect Storage and high-performance file systems like 

Lustre and NFS [4]. 

 
Kubernetes 

 
Kubernetes facilitates: 

 
1. Containerization: Packaging AI applications and dependencies into lightweight, portable containers [5]. 

2. Resource Management: Dynamic scaling and allocation of GPU, CPU, memory, and storage resources [6]. 

3. Orchestration: Automated deployment, scaling, and management of multi-container workloads [7]. 

4. Networking: Kubernetes CNI plugins (e.g., Calico, Flannel) for high-performance pod communication [8]. 

5. Add-ons and Plugins: GPU scheduling support via NVIDIA Device Plugin and NVIDIA GPU Operator [9]. 

 
Integrated Workflow 

 
The integration of NVIDIA DGX Cloud and Kubernetes enables: 

 
 Seamless deployment of containerized AI workflows. 

 Efficient scheduling and utilization of GPUs across distributed nodes. 

 High-speed interconnects for reduced latency in distributed training workloads. 
 

 

 
Key Technical Considerations 

 
1. Infrastructure Configuration 

 
 Node Types: Deploy GPU-optimized nodes (e.g., DGX systems) with adequate memory (1 TB+) and NVMe 

storage [1]. 

 High-Speed Networking: Use InfiniBand or 100+ Gbps Ethernet to minimize latency in distributed training 

[2]. 

 Storage Integration: Leverage NVIDIA GPUDirect Storage to bypass CPU bottlenecks during I/O 

operations, enabling direct GPU access to storage [4]. 

 
2. Kubernetes Cluster Setup 

 
 Deploy Kubernetes on bare-metal or virtualized DGX clusters using tools like Kubespray or kubeadm [7]. 

 Enable GPU scheduling with NVIDIA GPU Operator and Kubernetes Device Plugin [9]. 

 Configure Kubernetes namespaces for workload isolation and multi-tenancy [5]. 

 
3. Containerization Best Practices 

 
 Optimize images using NVIDIA NGC containers preloaded with AI frameworks and libraries [3]. 

 Minimize image size by removing unnecessary dependencies [8]. 

 Include health checks for containerized AI services to ensure reliability [6]. 

SV [ISSN 2349-7122 ] VOLUME 15 ISSUE 3 2025

PAGE NO : 125



 

 

4. Networking and Security 

 
 Cluster Networking: Use CNI plugins for low-latency communication [8]. 

 Security: Employ pod security policies, role-based access control (RBAC), and network segmentation [6]. 

 Encryption: Encrypt data in transit using TLS and enforce secure image registries [7]. 
 

 

 
Performance Optimization Framework 

 
1. Workload Scheduling 

 
 Use Kubernetes taints and tolerations to reserve GPU resources exclusively for AI workloads [9]. 

 Configure node affinity and anti-affinity rules to maximize data locality and reduce cross-node 

communication overhead [5]. 

 Employ the NVIDIA Device Plugin to expose GPUs as schedulable resources [9]. 

 
2. Resource Management 

 
 Resource Quotas: Set resource limits per namespace to avoid over-commitment [6]. 

 Autoscaling: Use Kubernetes Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler (VPA) for 

dynamic resource adjustment [7]. 

 Topology Awareness: Configure NUMA-aware scheduling to optimize memory and GPU access [8]. 

 
3. Monitoring and Profiling 

 
 Integrate Prometheus and Grafana for cluster-wide resource monitoring [5]. 

 Use NVIDIA DCGM Exporter for real-time GPU metrics and monitoring [9]. 

 Leverage Nsight Systems and Nsight Compute for application profiling [3]. 

 
4. Performance Tuning 

 
 Model Optimization: Use TensorRT for inference speedups [3]. 

 Distributed Training: Utilize frameworks like Horovod and NCCL for optimized multi-node 

communication [4]. 

 I/O Optimization: Accelerate data loading pipelines using NVIDIA DALI [2]. 

 Mixed Precision Training: Leverage Automatic Mixed Precision (AMP) for faster training and reduced 

memory usage [3]. 

 

 
Security Considerations 

 
 RBAC Policies: Implement fine-grained access controls to secure Kubernetes resources [6]. 

 Image Security: Scan container images for vulnerabilities using tools like Trivy and Aqua Security [7]. 

 Network Isolation: Use Kubernetes Network Policies to control pod communication [8]. 

 Audit Logs: Enable Kubernetes auditing to track changes and monitor suspicious activities [7]. 

SV [ISSN 2349-7122 ] VOLUME 15 ISSUE 3 2025

PAGE NO : 126



 

 

 
 

 
Use Case: Scaling Natural Language Processing Workloads 

Overview 

Training and deploying large-scale NLP models like GPT-4 require significant computational and storage resources. 

NVIDIA DGX Cloud and Kubernetes provide an efficient solution for handling these workloads. 

 
Implementation Steps 

 
1. Cluster Configuration: 

o Deploy Kubernetes with GPU-enabled nodes on DGX Cloud [1]. 

o Configure high-speed networking (InfiniBand) for distributed training [2]. 

2. Model Training: 

o Use PyTorch with Horovod for multi-node training [4]. 

o Optimize models using TensorRT and mixed precision training [3]. 

3. Data Pipeline: 

o Accelerate data preprocessing with NVIDIA DALI [2]. 

o Use GPUDirect Storage for efficient data loading [4]. 
4. Monitoring: 

o Profile training runs with NVIDIA Nsight Systems [3]. 

o Monitor GPU utilization using Prometheus and NVIDIA DCGM Exporter [5]. 
 
 

 
Future Directions 

 
 Hybrid Cloud Scaling: Extend Kubernetes clusters across on-premises and public cloud environments for 

hybrid deployments [5]. 

 Edge AI: Deploy lightweight Kubernetes clusters on edge devices for real-time AI inferencing [8]. 

 Federated Learning: Utilize Kubernetes for orchestrating federated learning workflows across multiple data 

centers [6]. 

 AutoML Integration: Incorporate AutoML pipelines for automated model optimization and tuning [9]. 
 

 

 
Conclusion 

 
NVIDIA DGX Cloud combined with Kubernetes provides a robust platform for scaling AI workloads. By leveraging 

the detailed optimization strategies outlined in this white paper, organizations can achieve unparalleled efficiency 

and performance for their AI applications. 

 

SV [ISSN 2349-7122 ] VOLUME 15 ISSUE 3 2025

PAGE NO : 127



 

 

References 

 
[1] NVIDIA DGX Cloud, "NVIDIA DGX Systems," [Online]. Available: https://www.nvidia.com/dgx-cloud 

 
[2] NVIDIA, "NVIDIA GPUDirect Technology," [Online]. Available: https://developer.nvidia.com/gpudirect 

 
[3] NVIDIA, "TensorRT," [Online]. Available: https://developer.nvidia.com/tensorrt 

 
[4] NVIDIA, "NVIDIA DALI," [Online]. Available: https://developer.nvidia.com/DALI 

 
[5] Kubernetes Documentation, "Overview of Kubernetes," [Online]. Available: https://kubernetes.io/docs/ 

 
[6] Trivy, "Container Security Scanning," [Online]. Available: https://github.com/aquasecurity/trivy 

 
[7] Prometheus, "Prometheus Monitoring System," [Online]. Available: https://prometheus.io/ 

 
[8] Kubernetes GPU Scheduling, "Manage GPUs in Kubernetes," [Online]. Available: 

https://kubernetes.io/docs/tasks/manage-gpus/ 

 
[9] NVIDIA, "NVIDIA GPU Operator," [Online]. Available: https://github.com/NVIDIA/gpu-operator 

SV [ISSN 2349-7122 ] VOLUME 15 ISSUE 3 2025

PAGE NO : 128


